If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+23=19x-25
We move all terms to the left:
x^2+23-(19x-25)=0
We get rid of parentheses
x^2-19x+25+23=0
We add all the numbers together, and all the variables
x^2-19x+48=0
a = 1; b = -19; c = +48;
Δ = b2-4ac
Δ = -192-4·1·48
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-13}{2*1}=\frac{6}{2} =3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+13}{2*1}=\frac{32}{2} =16 $
| 10−12x=−50 | | 4b+2=180 | | -2(-10+3x)/7-8-9=10x+20/5 | | 4x(5x+3)=30x | | 4aa=5 | | -5(3+3x)/4-2-3=5x+20/2 | | 75=1/4x+40 | | 10(v+11)=-70 | | x2-27x+100=0 | | 17=7x+38 | | 9-6=2x-11 | | (50x2)+x=1000 | | 7(f+10)=91 | | 8x/7x=3x/7x+49 | | S=180-(90-x+90-x) | | d-71/7=4 | | 6d-18=30 | | y/6-37=-31 | | n/9+42=44 | | 11+5v=41 | | √x=90-x | | z/5-4=3 | | 3p–2=4 | | 6/8+2=4x | | 2(k+23)=96 | | 2(j-34)=32 | | (5x)(5x)=10x2 | | 15-7y=-76 | | r/6-38=-30 | | 5x-2=-3x-2 | | 24=360÷x | | 9x–45=2x–11 |